Digital FET, N-Channel FDV301N, FDV301N-F169 #### **General Description** This N-Channel logic level enhancement mode field effect transistor is produced using **onsemi's** proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors. Since bias resistors are not required, this one N-channel FET can replace several different digital transistors, with different bias resistor values. #### **Features** - 25 V, 0.22 A Continuous, 0.5 A Peak - $R_{DS(on)} = 5 \Omega @ V_{GS} = 2.7 V$ - $R_{DS(on)} = 4 \Omega @ V_{GS} = 4.5 V$ - Very Low Level Gate Drive Requirements Allowing Direct Operation in 3 V Circuits. V_{GS(th)} < 1.06 V - Gate-Source Zener for ESD Ruggedness. > 6 kV Human Body Model - Replace Multiple NPN Digital Transistors with One DMOS FET - This Device is Pb-Free and Halide Free Figure 1. Inverter Application SOT-23 CASE 318-08 #### **MARKING DIAGRAM** &E = Designates Space &Y = Binary Calendar Year Coding Scheme Coding Scheme 301 = Specific Device Code &G = Date Code #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------------------|---------------------------------------|-----------------------| | FDV301N,
FDV301N-F169 | SOT-23-3
(Pb-Free,
Halide-Free) | 3000 /
Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. # ABSOLUTE MAXIMUM RATINGS T_A = $25^{\circ}C$ unless otherwise noted. | Symbol | Parameter | FDV301N | Unit | |------------------------------------|--|------------|------| | V _{DSS} , V _{CC} | Drain-Source Voltage, Power Supply Voltage | 25 | V | | V _{GSS} , V _I | Gate-Source Voltage, V _{IN} | 8 | V | | I _D , I _O | Drain/Output Current - Continuous | 0.22 | Α | | | | 0.5 | | | P _D | Maximum Power Dissipation | 0.35 | W | | T _J , T _{STG} | Operating and Storage Temperature Range | -55 to 150 | °C | | ESD | Electrostatic Discharge Rating MIL–STD–883D Human Body Model (100 pF/1500 Ω) | 6.0 | kV | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS T_A = 25°C unless otherwise noted. | Symbol | Parameter | Value | Unit | |----------------|---|-------|------| | $R_{ heta JA}$ | Thermal Resistance, Junction-to-Ambient | 357 | °C/W | # **INVERTER ELECTRICAL CHARACTERISTICS** $T_A = 25^{\circ}C$ unless otherwise noted. | Symbol | Parameter | Test Conditions | Min | Тур | Max | Unit | |---------------------|-----------------------------------|--|-----|-----|-----|------| | I _{O(off)} | Zero Input Voltage Output Current | V _{CC} = 20 V, V _I = 0 V | - | - | 1 | μΑ | | V _{I(off)} | Input Voltage | $V_{CC} = 5 \text{ V}, I_{O} = 10 \mu\text{A}$ | - | _ | 0.5 | V | | V _{I(on)} | | $V_O = 0.3 \text{ V}, I_O = 0.005 \text{ A}$ | 1 | _ | _ | | | R _{O(on)} | Output to Ground Resistance | V _I = 2.7 V, I _O = 0.2 A | - | 4 | 5 | Ω | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. # **ELECTRICAL CHARACTERISTICS** $T_A = 25^{\circ}C$ unless otherwise noted. | Symbol | Parameter Test Conditions | | | Тур | Max | Unit | | | |--------------------------------|---|--|------|------|------|-------|--|--| | OFF CHARACT | OFF CHARACTERISTICS | | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | 25 | - | _ | V | | | | | $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | I _D = 250 μA, Referenced to 25°C | - | 25 | - | mV/°C | | | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 20 V, V _{GS} = 0 V | - | - | 1 | μΑ | | | | | | V _{DS} = 20 V, V _{GS} = 0 V, T _J = 55°C | - | - | 10 | | | | | I _{GSS} | Gate - Body Leakage Current | V _{GS} = 8 V, V _{DS} = 0 V | - | - | 100 | nA | | | | ON CHARACTERISTICS | | | | | | | | | | $\Delta V_{GS(th)}/\Delta T_J$ | Gate Threshold Voltage Temp.
Coefficient | I _D = 250 μA, Referenced to 25°C | _ | -2.1 | - | mV/°C | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 0.70 | 0.85 | 1.06 | V | | | | R _{DS(on)} | Static Drain-Source On-Resistance | V _{GS} = 2.7 V, I _D = 0.2 A | - | 3.8 | 5 | Ω | | | | | | $V_{GS} = 2.7 \text{ V}, I_D = 0.2 \text{ A}, T_J = 125^{\circ}\text{C}$ | - | 6.3 | 9 | | | | | | | V _{GS} = 4.5 V, I _D = 0.4 A | - | 3.1 | 4 | | | | | I _{D(on)} | On-State Drain Current | V _{GS} = 2.7 V, V _{DS} = 5 V | 0.2 | - | - | Α | | | | 9FS | Forward Transconductance | V _{DS} = 5 V, I _D = 0.4 A | - | 0.2 | _ | S | | | #### **ELECTRICAL CHARACTERISTICS** T_A = 25°C unless otherwise noted. (continued) | Symbol | Parameter | Test Conditions | Min | Тур | Max | Unit | |---------------------|---|---|-----|------|------|------| | YNAMIC CH | ARACTERISTICS | | | | - | | | C _{iss} | Input Capacitance | V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz | | 9.5 | _ | pF | | C _{oss} | Output Capacitance | | - | 6 | _ | | | C _{rss} | Reverse Transfer Capacitance | | - | 1.3 | _ | | | WITCHING O | CHARACTERISTICS (Note 1) | | | | | | | t _{D(on)} | Turn - On Delay Time | $V_{DD} = 6 \text{ V, } I_{D} = 0.5 \text{ A, } V_{GS} = 4.5 \text{ V,} \\ R_{GEN} = 50 \Omega$ | - | 3.2 | 8 | ns | | t _r | Turn – On Rise Time | | - | 6 | 15 | | | t _{D(off)} | Turn – Off Delay Time | | - | 3.5 | 8 | | | t _f | Turn – Off Fall Time | | - | 3.5 | 8 | | | Q_g | Total Gate Charge | $V_{DS} = 5 \text{ V}, I_D = 0.2 \text{ A}, V_{GS} = 4.5 \text{ V}$ | - | 0.49 | 0.7 | nC | | Q _{gs} | Gate-Source Charge | | - | 0.22 | _ | | | Q_{gd} | Gate-Drain Charge | | - | 0.07 | | | | RAIN-SOUF | RCE DIODE CHARACTERISTICS AND M | AXIMUM RATINGS | | | | | | I _S | Maximum Continuous Drain-Source Diode Forward Current | | | _ | 0.29 | Α | | V_{SD} | Drain-Source Diode Forward Voltage | V _{GS} = 0 V, I _S = 0.29 A (Note 1) | - | 0.8 | 1.2 | V | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%. #### TYPICAL CHARACTERISTICS Figure 2. On-Region Characteristics Figure 3. On-Resistance Variation with Drain Current and Gate Voltage #### TYPICAL PERFORMANCE CHARACTERISTICS (continued) Figure 8. Gate Charge Characteristics Figure 6. Transfer Characteristics 3 f = 1 MHz 2 C_{rss} $V_{GS} = 0 V$ 0.1 0.5 1 2 5 10 25 20 10 5 with Source Current and Temperature 30 $\mathsf{C}_{\underline{\mathsf{iss}}}$ Coss Figure 7. Body Diode Forward Voltage Variation Figure 9. Capacitance Characteristics V_{DS}, Drain to Source Voltage (V) #### TYPICAL PERFORMANCE CHARACTERISTICS (continued) Figure 10. Maximum Safe Operating Area Figure 11. Single Pulse Maximum Power Dissipation Figure 12. Transient Thermal Response Curve **SOT-23 (TO-236)** CASE 318 ISSUE AT **DATE 01 MAR 2023** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994. - 2. CONTROLLING DIMENSION: MILLIMETERS - 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. - 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIM | ETERS | | | | | |-----|--------|-------|------|-------|-------|-------| | DIM | MIN. | N□M. | MAX. | MIN. | N□M. | MAX. | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.039 | 0.044 | | A1 | 0.01 | 0.06 | 0.10 | 0.000 | 0.002 | 0.004 | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.017 | 0.020 | | С | 0.08 | 0.14 | 0.20 | 0.003 | 0.006 | 0.008 | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | Ε | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | e | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.080 | | L | 0.30 | 0.43 | 0.55 | 0.012 | 0.017 | 0.022 | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.027 | | HE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | | Т | 0* | | 10° | 0* | | 10* | XXX = Specific Device Code M = Date Code ■ = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. RECOMMENDED MOUNTING FOOTPRINT For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Repo
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------|--|-------------|--|--| | DESCRIPTION: | SOT-23 (TO-236) | | PAGE 1 OF 2 | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. # MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS **SOT-23 (TO-236)** CASE 318 ISSUE AT **DATE 01 MAR 2023** | STYLE 1 THRU 5:
CANCELLED | STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR | STYLE 7:
PIN 1. EMITTER
2. BASE
3. COLLECTOR | STYLE 8:
PIN 1. ANODE
2. NO CONNECTION
3. CATHODE | ı | | |---|---|---|---|---|---| | STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE | STYLE 10:
PIN 1. DRAIN
2. SOURCE
3. GATE | STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE | STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE | STYLE 13:
PIN 1. SOURCE
2. DRAIN
3. GATE | STYLE 14:
PIN 1. CATHODE
2. GATE
3. ANODE | | STYLE 15:
PIN 1. GATE
2. CATHODE
3. ANODE | STYLE 16:
PIN 1. ANODE
2. CATHODE
3. CATHODE | STYLE 17:
PIN 1. NO CONNECTION
2. ANODE
3. CATHODE | STYLE 18:
PIN 1. NO CONNECTION
2. CATHODE
3. ANODE | STYLE 19:
I PIN 1. CATHODE
2. ANODE
3. CATHODE-ANODE | STYLE 20:
PIN 1. CATHODE
2. ANODE
3. GATE | | STYLE 21:
PIN 1. GATE
2. SOURCE
3. DRAIN | STYLE 22:
PIN 1. RETURN
2. OUTPUT
3. INPUT | STYLE 23:
PIN 1. ANODE
2. ANODE
3. CATHODE | STYLE 24:
PIN 1. GATE
2. DRAIN
3. SOURCE | STYLE 25:
PIN 1. ANODE
2. CATHODE
3. GATE | STYLE 26:
PIN 1. CATHODE
2. ANODE
3. NO CONNECTION | | STYLE 27:
PIN 1. CATHODE
2. CATHODE
3. CATHODE | STYLE 28:
PIN 1. ANODE
2. ANODE
3. ANODE | | | | | | DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-----------------|---|-------------|--| | DESCRIPTION: | SOT-23 (TO-236) | | PAGE 2 OF 2 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales